A regex based tokenizer that extracts tokens either by using the provided regex pattern to split the text (default) or repeatedly matching the regex (if gaps is false). Optional parameters also allow filtering tokens using a minimal length. It returns an array of strings that can be empty.

ft_regex_tokenizer(x, input.col = NULL, output.col = NULL, pattern, ...)

Arguments

x
An object (usually a spark_tbl) coercable to a Spark DataFrame.
input.col
The name of the input column(s).
output.col
The name of the output column.
pattern
The regular expression pattern to be used.
...
Optional arguments; currently unused.

See also

See http://spark.apache.org/docs/latest/ml-features.html for more information on the set of transformations available for DataFrame columns in Spark.

Other feature transformation routines: ft_binarizer, ft_bucketizer, ft_count_vectorizer, ft_discrete_cosine_transform, ft_elementwise_product, ft_index_to_string, ft_one_hot_encoder, ft_quantile_discretizer, ft_sql_transformer, ft_string_indexer, ft_tokenizer, ft_vector_assembler, sdf_mutate