R interface for MLeap
mleap is a sparklyr extension that provides an interface to MLeap, which allows us to take Spark pipelines to production.
Install mleap
mleap can be installed from CRAN via
install.packages("mleap")
or, for the latest development version from GitHub, using
devtools::install_github("rstudio/mleap")
Setup
Once mleap has been installed, we can install the external dependencies using:
library(mleap)
install_mleap()
Another dependency of mleap is Maven. If it is already installed, just point mleap to its location:
options(maven.home = "path/to/maven")
If Maven is not yet installed, which is the most likely case, use the following to install it:
install_maven()
Create an MLeap Bundle
Start Spark session using
sparklyrlibrary(sparklyr) sc <- spark_connect(master = "local", version = "2.2.0") mtcars_tbl <- sdf_copy_to(sc, mtcars, overwrite = TRUE)Create a fit an ML Pipeline
pipeline <- ml_pipeline(sc) %>% ft_binarizer("hp", "big_hp", threshold = 100) %>% ft_vector_assembler(c("big_hp", "wt", "qsec"), "features") %>% ml_gbt_regressor(label_col = "mpg") pipeline_model <- ml_fit(pipeline, mtcars_tbl)A transformed data frame with the appropriate schema is required for exporting the Pipeline model
transformed_tbl <- ml_transform(pipeline_model, mtcars_tbl)Export the model using the
ml_write_bundle()function frommleapmodel_path <- file.path(tempdir(), "mtcars_model.zip") ml_write_bundle(pipeline_model, transformed_tbl, model_path)## Model successfully exported.Close Spark session
spark_disconnect(sc)
At this point, we can share mtcars_model.zip with the deployment/implementation engineers, and they would be able to embed the model in another application. See the MLeap docs for details.
Test the mleap bundle
The mleap package also provides R functions for testing that the saved models behave as expected. Here we load the previously saved model:
model <- mleap_load_bundle(model_path)
model
## MLeap Transformer
## <db23a9f1-7b3d-4d27-9eb0-8675125ab3a5>
## Name: pipeline_fe6b8cb0028f
## Format: json
## MLeap Version: 0.10.0-SNAPSHOT
To retrieve the schema associated with the model use the mleap_model_schema() function
mleap_model_schema(model)
## # A tibble: 6 x 4
## name type nullable dimension
## <chr> <chr> <lgl> <chr>
## 1 qsec double TRUE <NA>
## 2 hp double FALSE <NA>
## 3 wt double TRUE <NA>
## 4 big_hp double FALSE <NA>
## 5 features double TRUE (3)
## 6 prediction double FALSE <NA>
Then, we create a new data frame to be scored, and make predictions using the model:
newdata <- tibble::tribble(
~qsec, ~hp, ~wt,
16.2, 101, 2.68,
18.1, 99, 3.08
)
# Transform the data frame
transformed_df <- mleap_transform(model, newdata)
dplyr::glimpse(transformed_df)
## Observations: 2
## Variables: 6
## $ qsec <dbl> 16.2, 18.1
## $ hp <dbl> 101, 99
## $ wt <dbl> 2.68, 3.08
## $ big_hp <dbl> 1, 0
## $ features <list> [[[1, 2.68, 16.2], [3]], [[0, 3.08, 18.1], [3]]]
## $ prediction <dbl> 21.06529, 22.36667