spark_read_source

Read from a generic source into a Spark DataFrame.

Description

Read from a generic source into a Spark DataFrame.

Usage

spark_read_source(
  sc,
  name = NULL,
  path = name,
  source,
  options = list(),
  repartition = 0,
  memory = TRUE,
  overwrite = TRUE,
  columns = NULL,
  ...
)

Arguments

Argument Description
sc A spark_connection.
name The name to assign to the newly generated table.
path The path to the file. Needs to be accessible from the cluster. Supports the “hdfs://”, “s3a://” and “file://” protocols.
source A data source capable of reading data.
options A list of strings with additional options. See https://spark.apache.org/docs/latest/sql-programming-guide.html#configuration.
repartition The number of partitions used to distribute the generated table. Use 0 (the default) to avoid partitioning.
memory Boolean; should the data be loaded eagerly into memory? (That is, should the table be cached?)
overwrite Boolean; overwrite the table with the given name if it already exists?
columns A vector of column names or a named vector of column types. If specified, the elements can be "binary" for BinaryType, "boolean" for BooleanType, "byte" for ByteType, "integer" for IntegerType, "integer64" for LongType, "double" for DoubleType, "character" for StringType, "timestamp" for TimestampType and "date" for DateType.
Optional arguments; currently unused.

See Also

Other Spark serialization routines: collect_from_rds(), spark_load_table(), spark_read_avro(), spark_read_binary(), spark_read_csv(), spark_read_delta(), spark_read_image(), spark_read_jdbc(), spark_read_json(), spark_read_libsvm(), spark_read_orc(), spark_read_parquet(), spark_read_table(), spark_read_text(), spark_read(), spark_save_table(), spark_write_avro(), spark_write_csv(), spark_write_delta(), spark_write_jdbc(), spark_write_json(), spark_write_orc(), spark_write_parquet(), spark_write_source(), spark_write_table(), spark_write_text()