Feature Transformation -- IDF (Estimator)

Compute the Inverse Document Frequency (IDF) given a collection of documents.

ft_idf(x, input_col = NULL, output_col = NULL, min_doc_freq = 0,
  uid = random_string("idf_"), ...)

Arguments

x

A spark_connection, ml_pipeline, or a tbl_spark.

input_col

The name of the input column.

output_col

The name of the output column.

min_doc_freq

The minimum number of documents in which a term should appear. Default: 0

uid

A character string used to uniquely identify the feature transformer.

...

Optional arguments; currently unused.

Value

The object returned depends on the class of x.

  • spark_connection: When x is a spark_connection, the function returns a ml_transformer, a ml_estimator, or one of their subclasses. The object contains a pointer to a Spark Transformer or Estimator object and can be used to compose Pipeline objects.

  • ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the transformer or estimator appended to the pipeline.

  • tbl_spark: When x is a tbl_spark, a transformer is constructed then immediately applied to the input tbl_spark, returning a tbl_spark

Details

In the case where x is a tbl_spark, the estimator fits against x to obtain a transformer, which is then immediately used to transform x, returning a tbl_spark.

See also